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Abstract

Aim: Spinal cord stimulation (SCS) is an effective method to treat neuropathic

pain. It is necessary to identify the responders of SCS analgesia before implanta-

tion. The aim of this study is to investigate the relationship between the cortical

dynamics and SCS analgesia responders in pain management. Methods:

Resting-state EEG recording was performed in patients who underwent short-

term implantation of spinal cord stimulation for pain therapy. We then did

spectral analysis to capture the pattern of cortical oscillation between neuromo-

dulation therapy analgesia responders and nonresponders. Results: About

58.3% (14 out of 24) of participants were considered as analgesia responders,

with average visual analogue scores reduction of 4.8 � 1.0 after surgery, and

2.1 � 0.7 for the nonresponder subgroup, respectively. The alpha oscillation

was significantly enhanced in responder cohort compared with nonresponders.

We also observed an increasing spectral power of gamma band in responders.

Furthermore, the attenuation of pain severity was significantly correlated with

the global alpha oscillation activity (r = 0.60, P = 0.002). Likely, positive and

significant correlation was found between the pain relief and gamma activity

(r = 0.58, P = 0.003). Conclusions: Distinct pattern of neural oscillation is

associated with the analgesic effect of spinal cord stimulation in pain manage-

ment, enhancement of cortical alpha and gamma oscillation may be a predictor

of analgesia responders.

Introduction

Neuropathic pain is one of the most common yet debili-

tating pathological conditions, caused by a primary lesion

or disease of the peripheral or central nerve system.1

Patients may suffer intractable pain caused by postherpe-

tic neuralgia, diabetic neuropathy, traumatic injury, post-

surgical lesion, multiple sclerosis, and cancer.2–6 The

estimated prevalence of neuropathic pain ranged between

7% and10%.7,8 Recently, greater risk of neuropathic pain

(14.6%) is reported among nursing home residents.9 As a

result, the quality of life is significantly reduced in those

with neuropathic pain.

The main goal of neuropathic pain management is to

control the pain symptoms, characterized by allodynia,

hyperalgesia, and paresthesia. In general, a great challenge

is to control the spontaneous episodes as well as evoked

painful perception.10 Pharmacotherapy remains the con-

ventional option of neuropathic pain treatment. Cur-

rently, the first-line medications include gabapentinoids,

tricyclic antidepressant, and selective serotonin–norepi-
nephrine reuptake inhibitors according to the recommen-

dation of The Special Interest Group on Neuropathic

Pain.10 However, the therapeutic effect may be still unsat-

isfactory even combined with multiple analgesic agents

(e.g., lidocaine patch, capsaicin, or opioids).

In addition to pharmacotherapy, invasive procedures

can be considered when conservative methods fail to pro-

vide pain relief. Local or epidural nerve block is easy to

perform to achieve immediate improvement of
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symptoms, but the long-term effect remains

controversial.11 To achieve enduring relief of pain, one

potential solution is to implant permanent intrathecal

drug delivery system for administration of analgesic

medications.12,13 Despite intrathecal drug delivery system,

spinal cord stimulation (SCS) may be an alternative

option for long-term management of chronic

neuropathic pain.

As one important outgrowth of the well-known gate

control theory proposed by Melzack and Wall in 1965,

SCS has been increasingly used to treat severe pain

syndromes.14,15 The indications of SCS cover multiple

forms of neuropathic pain, such as failed back surgery

syndrome (FBSS), complex regional pain syndrome,

peripheral neuropathy, and phantom limb pain.16

Recently, emerging evidence supports its validation in

pain management of herpes zoster, and acts as a potential

tool to prevent the development of postherpetic

neuralgia.17–20 It is generally accepted that SCS analgesia

responder should report at least 50% reduction of pain.

Thus, one necessary step of permanent implantation of

SCS is to confirm its clinical efficacy during the trial

period.21

However, the analgesic effect may still fade after initial

pain relief.22 Recent evidence has revealed that about

12–20% of patients did not achieve satisfactory symp-

tomatic improvement (≥50% pain relief from baseline)

even with high-frequency SCS strategy.23,24 It is signifi-

cantly important for those suffering herpetic-related neu-

ralgia, as adequate analgesic intervention may not only

attenuate symptomatic pain, but also prevent the devel-

opment of postherpetic neuralgia. Thus, potential bio-

markers for identification of SCS responder is necessary

and urgently needed. In addition, similar clinical data of

SCS treatment for herpetic-related pain management

remains less studied. In this study, we aim to investigate

the response rate of SCS analgesia in patient with herpes

zoster-related pain. Furthermore, our previous data has

demonstrated the potential link between the neuromo-

dulation therapy and cortical dynamics. Specifically,

alpha rhythmic oscillatory activity was enhanced under

activation of electoral nerve stimulation in patient with

herpetic-related pain.20 Likewise, emerging data have

indicated a potential role of electroencephalography

(EEG) in comparison of different neuromodulation sta-

tus during SCS treatment, such as tonic and burst stim-

ulation strategy.25–27 In addition, cortical oscillation is

altered in association with pain perception.28,29 However,

the cortical signature of SCS therapeutic responder

remains less unknown. Thus, the other goal of this study

is to assess the feasibility and clinical value of resting-

state EEG in recognition of the SCS analgesia responder

in pain management.

Methods

Study design and participants

Twenty-four patients presented with moderate to severe

pain after herpes zoster infection, affecting the cervical

(n = 3), thoracic (n = 17), and lumbar (n = 4) derma-

tomes were prospectively enrolled in this study. All par-

ticipants consented to undertake the SCS surgery and

EEG recording during hospitalization. The medical data

were systematically recorded for further analysis, includ-

ing age, sex, duration of disease and SCS implantation,

pain severity, etc. The prospective observational study was

performed under the guidance of the Helsinki Declara-

tion. The study was approved by the Ethics Committee of

The Third Xiangya Hospital, Central South University,

China (No. 22216).

Surgical technique of SCS implantation

Details of SCS procedure have been described

previously.18,20 Specifically, the preoperative fasting was

required for administration of sedative agents, if neces-

sary, in the procedure. The target of spinal segment was

determined by the affected region of herpetic lesion pre-

operatively, and confirmed by the fluoroscopic imaging

during operation.

Patient was placed in a prone position, and the local

analgesia was applied before the epidural puncture with

one Tuohy needle (14G). The needle stylet was removed

after the needle entered the epidural space, and an

eight-contact lead (No. 3873; Medtronic, Minneapolis,

MN, USA) was then inserted through the cannula. The

lead was advanced under the anterior–posterior view of

fluoroscopy, and one sensory testing was conducted to

ensure the electrical stimulation covered the painful

regions reported by the patient. Patient was asked to

stay in bed in the next 2 days to avoid potential lead

migration. We excluded the participants with lead

migration and dislocation in this study. The stimulation

frequency was set at 50 Hz, with pulse width of

500 lsec. We adjusted the voltage of electrical stimula-

tion according to the pain severity. The stimulation lead

was removed within 2 weeks to avoid the potential of

infection.

EEG recording

The protocol of EEG recording has been described

previously.20 The EEG recording was scheduled 4–5 days

after SCS implantation. The stimulation parameter was

set prior to the EEG testing to ensure an optimal coverage

of the painful region. To evaluate the cortical dynamics
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of SCS, the stimulator was inactivated at least 30 min

before the first recording session, following by another

session with activation of the SCS. The recording dura-

tion ranged between 5 and 7 min for each session.

During each visit, one resting state EEG recording was

conducted in one quiet, temperature-controlled, and elec-

trically shielded office. Participants were kept silent and

awake during the experiment with eyes closed. We used a

16-channel biosensor (Cyton + Daisy, www.OpenBCI.

com), which was connected to the OpenBCI electrode cap

for the collection of EEG data. We chose the Cz channel

as the reference electrode, and the Fpz for the ground

electrode, respectively. To compare the cortical dynamics

of different brain regions, we further divided the channels

into five regions (frontal, central, occipital, parietal, and

temporal sites), according to the cortical mapping. Defini-

tion of the EEG channels is given in the Table 1. The

software for data visualization and acquisition was down-

loaded from the website (www.OpenBCI.com). The EEG

data were recorded at a sampling rate of 128 Hz. We

tested the impedances of each electrode with the Open-

BCI GUI software prior to the onset of recording, and

the impedance should be kept below 10 KΩ.

Processing of EEG data

After EEG recording, raw data were extracted with c. The

open-source EEGLAB toolbox was introduced for offline

processing and analysis.30 All data were manually checked

by one independent researcher (L.C.) to rule out the arti-

facts and malfunctioning channels. The bandpass filter of

1–45 Hz was used, and the filtered continuous data were

segmented into consecutive 2 sec epochs. The threshold

amplitude of epochs for the exclusion was set beyond

�80 lV. The independent component analysis was per-

formed for the identification and correction of eye move-

ment artifacts. Thirty artifact-free segments were used to

generate the dataset during each session for the statistical

calculation. Spectral power analysis was performed using

the fast Fourier transform algorithm with the “specto-

po.m” function script in the EEGLAB. The EEG data were

sub-banded into five ranges: d (delta, 0.5–4.0 Hz), h
(theta, 4.0–8.0 Hz), a (alpha, 8.0–13.0 Hz), b (beta, 13.0–

30.0 Hz), and c (gamma, 30.0–45.0 Hz). We calculated

the spectra of individual channel by averaging the data

across epochs for each patient.

Pain assessment and follow-up

Pain severity was assessed by the visual analog scale

(VAS), which ranged between 0 (“pain free”) and 10

(“worst pain imaginable”). The therapeutic effect was cal-

culated by the reduction of pain scores between the base-

line and postoperative visit. The SCS analgesia responder

was defined as pain relief over 50% at discharge.31 Rou-

tine telephone interview was conducted at 1-, 3-, 6-, and

12-month after treatment by one independent researcher

(L.C.).

Statistical analysis

Descriptive data were used to capture the clinical features

of participants. Variables are presented as means � SDs.

EEG raw data were processed under the circumstances of

EEGLAB software (MathWorks, Inc., Natick, MA, USA).

The extracted data were analyzed with Prism Version 8.0

(GraphPad, San Diego, CA, USA). We compared the pain

scores and spectral power with the two-way repeated-

measures analysis of variance, with post hoc multiple

pairwise Bonferroni correction. The measurement of nor-

mality was calculated with the Shapiro–Wilk testing for

each variable. Spearman’s correlation analysis was then

used for the variable with abnormal distribution. The

two-tailed value of P < 0.05 was considered statistically

significant.

Results

Clinical features of enrolled patients

Fourteen patients reported pain relief over 50% compared

with baseline at discharge, and ten were considered as

nonresponders respectively. About 42% of the partici-

pants were female in this study, with mean age of

66.7 � 9.3 years old. Most patients (16 out of 24) were

at sub-acute phase of herpetic lesion, with duration of

disease ranging between 1 and 3 months. The percentage

of postherpetic neuralgia was 33% that moderate to

severe pain condition lasted over 3 months. We found

that the nonresponder subgroup had significantly increas-

ing implantation time compared with SCS responders

(12.4 � 2.0 vs. 10.4 � 2.0, P = 0.02). Both cohorts

reported moderate to severe neuropathic pain before SCS

treatment, with mean VAS of 7.5 � 1.1 at baseline.

To evaluate the clinical outcome of SCS treatment, we

recorded the pain severity before discharge, and did three

Table 1. Definition of EEG channel location.

ROI Electrode location

Frontal site FP1, FP2, F3, F4, F7, F8
Central site C3, C4

Parietal site P3, P4, P7, P8
Occipital site O1, O2

Temporal site T7, T8

ROI, region of interest.
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routine telephone follow-ups at 1-, 3-, and 6-months after

surgery. Both cohorts represented with significant

improvement of symptoms at each visit compared with

baseline (Table 2). However, the immediate therapeutic

effect was significantly improved in the SCS-responder

subgroup, as demonstrated by the lower VAS at discharge.

In contrast, the short-term analgesic effect was better but

not statistically significant in the responder at 1-month

follow-up. Likely, the medium- (3 months), and long-

term (6 months) SCS functioning was neither signifi-

cantly improved in the responders.

Comparison of cortical dynamics between
SCS analgesia responder and nonresponder

Next, we investigated the cortical effects associated with

the neuromodulation therapy, by recording the 16-

channel EEG at resting state in the responders (Fig. 1A, B)

and nonresponders (Fig. 1C, D), respectively. To conduct

further analysis quantitatively, we calculated the grand

average spectral power by averaging across all channels in

two subgroups (Fig. 1E). By dividing the neural oscilla-

tions into five physiological sub-bands (Table 1), we

found that the general spectral density of SCS responders

was significantly increasing at the alpha band, with or

without activation of SCS (Fig. 1F). Besides, the gamma

oscillatory activity was also enhanced in the SCS

responders under baseline condition (SCS off), as shown

in the Figure 1G.

Enhancement of oscillations in the
responder to SCS treatment

In Figure 2, we compared the distinct pattern of cortical

responses to SCS intervention by filtering the alpha sub-

band (8.0–13.0 Hz) (Fig. 2A, B). The spectral power was

lower in the nonresponders compared with responders.

Furthermore, we found that the source of enhanced alpha

activities may originate from the frontal and temporal

region, as shown in the Figure 2C.

Next, we evaluated the impact of gamma oscillations

on the therapeutic effect of SCS. Consistent with alpha

rhythm, we also observed an increasing spectral power at

gamma band in SCS analgesia responders, as shown in

the representative spectrogram (Fig. 2D, E). We then

compared the spectral density of gamma activity between

two cohorts at different cortical regions. In Figure 2F, we

can find that the gamma activity was statistically more

significant in SCS responders at the frontal regions.

Correlation between the pain relief and
neural oscillations

In Figure 3, we show the relationship of pain reduction

between the alpha, and gamma oscillations. Specifically,

significant and positive correlation was found between the

pain relief, assessed by the percentage of pain reduction

to baseline, and the alpha spectral power (Fig. 3A,

r = 0.60, P = 0.002). This phenomenon was also signifi-

cant in the frontal region, as shown in the FP1 channel

(Fig. 3B). Likely, the overall gamma activity was positively

associated with the pain reduction (Fig. 3C, r = 0.58,

P = 0.003) in all participants. Also, strong and positive

relationship was found between the gamma oscillations at

the frontal (F3 channel) site, and the percentage of pain

relief (Fig. 3D, r = 0.63, P = 0.001).

Discussion

Spinal cord stimulation has been increasingly applied to

treat intractable neuropathic pain. Recently, its validation

in short-term implantation therapy for postherpetic neu-

ralgia management has been generally accepted in the

Chinese population.32 However, the response rates of this

neuromodulation for herpetic-related pain remains less

known, and it is essential to identify the proper candi-

dates for this invasive treatment. In this study, we exam-

ined the role of the EEG in recognition of SCS analgesia

Table 2. Comparison of clinical manifestation between SCS analgesia

responder and nonresponder cohort.

Variables Responder Nonresponder P value

Number of patients 14 10

Age (years) 66.1 � 9.6 68.5 � 9.1 0.87

Sex (female, %) 7 (50) 3 (30) 0.42

Duration of disease (%)

1–3 months 9 (64) 7 (70)

Over 3 months 5 (36) 3 (30) 0.99

Painful region (%)

Cervical 2 (14) 1 (10)

Thoracic 10 (72) 7 (70)

Lumbar 2 (14) 2 (20) 0.90

Comorbidities (n, %)

Hypertension 6 (43) 4 (40)

Diabetes mellitus 4 (29) 2 (20) 1.0

Duration of implantation

(days)

10.4 � 2.0 12.4 � 2.0 0.02*

Duration of hospitalization

(days)

15.3 � 3.1 17.8 � 4.8 0.13

Pain severity (VAS)

Baseline 7.7 � 1.0 7.3 � 1.3 1.0

Discharge 2.9 � 0.7 5.2 � 1.0 0.00***

One month 3.5 � 1.9 4.9 � 1.4 0.22

Three months 2.9 � 2.5 4.8 � 1.4 0.20

Six months 2.7 � 2.6 4.6 � 1.9 0.28

Variables are presented as means � SDs.

*P < 0.05.

***P < 0.0001.
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responder in the postherpetic neuralgia population. We

found that, consistent with our previous data that the

therapeutic effect may be partially associated with the

alpha oscillatory activities,20 which can be promisingly

used as one biomarker for the classification of responder

to the neuromodulation therapy.

Figure 1. Comparison of brain neural activity between SCS analgesia responder and nonresponder cohort. (A) Representative 16-channel EEG

traces in SCS analgesia responder. (B) Time-domain spectrogram of 10-sec at resting state of EEG recording without activation of SCS. (C, D)

Representative EEG data and spectrogram from one patient from nonresponder group. (E) Grand average spectral power density in the SCS

analgesia responder (green line), and the nonresponder (blue line) respectively. (F) SCS responders demonstrated significant enhancement of alpha

band oscillations with or without SCS activation when com-pared with nonresponder. *P < 0.05, two-way ANOVA with post hoc multiple pair-wise

Bonferroni correction. (G) The overall gamma power across all channels was statistically increased in the responder group at baseline, but NOT

during activation of SCS. *P < 0.05, two-way ANOVA with post hoc multiple pairwise Bonferroni correction.
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Compared with trigeminal postherpetic neuralgia,31 we

noticed the response rate was relatively lower in those

who were treated by SCS (58%), and 83% for peripheral

nerve stimulation respectively. We assume that several

reasons may contribute to the divergence of responsive

forms to neuromodulation therapy, including herpetic

and implantation site, stimulation parameter, tolerance

threshold, and neuropathic processing at distinct level

(peripheral vs. central sensitization). Consistent with pain

relief, the implantation duration was significantly pro-

longed in the nonresponder group, about 2 days longer

compared with the responder cohort. Thus, we think it

necessary to identify the truly responder to neuromodula-

tion procedure to achieve a better clinical outcome.

Despite the methodological and clinical discrepancy, we

have previously demonstrated one common supra-spinal

dynamic phenotype of electrical nerve stimulation

treatment,20 that the analgesic effect may partially be

mediated by the alpha oscillatory activity. Thus, we spec-

ulate that the cortical oscillations may be one promising

biomarker of SCS analgesia responder. EEG is commonly

used to detect the neurological processing, and considered

as one potential biomarker of pain perception in health

state.33 One obvious advantage of EEG recording is the

noninvasive setup with a high temporal resolution.

To capture the cortical patterns of neuromodulation,

we conducted EEG recording with eye closed at resting

state as described in the previous protocol,20 with or

without SCS activation. Inconsistent with previous data,

we did not observe dramatically spectral power enhance-

ment with activation of SCS compared with baseline. One

possible explanation is the relatively small sample size of

previous pilot study. In addition, the combination of

peripheral nerve and spinal cord bias may also contribute

the cortical alternations of neuromodulation.

Meanwhile, we found that the cortical oscillations at

alpha and gamma band were significantly enhanced in

SCS-responders. Majority of the EEG study reported an

increasing activity of gamma power during painful stim-

uli, yet, more evidence supports the decreasing trend in

alpha range.33–36 In our cases, synchronous gaining at

alpha and gamma rhythm of the SCS analgesia responder

may reveal the mechanism of pain regulation with

involvement of top-down and button-up system.37 For

instance, enhanced gamma power may not be associated

with more severe pain in the SCS analgesia responder,

instead, increasing gamma activity may indicate cortical

control of pain endogenously.38,39

Likewise, the enhancement of alpha oscillations in the

SCS responders may indicate the reduced input of

Figure 2. Alpha and gamma oscillations were enhanced in SCS analgesia responders. Sub-band analysis within alpha rhythm (8.0–13.0 Hz) in

SCS responders (A) and nonresponders (B). (C) The alpha band power was significantly enhanced in the frontal and temporal region of the

responder cohort. *P < 0.05, two-way ANOVA with post hoc multiple pairwise Bonferroni correction. (D, E) Gamma spectral power analysis

between SCS analgesia responder and nonresponder. (F) The gamma band power was significantly enhanced in the frontal region of the

neuromodulation therapy responder cohort. *P < 0.05, two-way ANOVA with post hoc multiple pairwise Bonferroni correction.
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nociception to the brain network. However, it remains

controversial about the actual changes of alpha oscilla-

tions during pain perception, as demonstrated by an

opposite change in the frontal region.40,41 Thus, we think

it is more important to investigate the whole brain net-

work rather than isolating specific cortical activity.30 In

addition to alpha and gamma oscillatory enhancement,

the generalized increasing trend of global spectral density

across other physiological range, may potentially reveal

the active status of brain in the SCS analgesia responder

cohort.

It is also essential to identify the biomarker of SCS

treatment responders with feasible and easy read-out

index. Here, we have shown that both alpha and gamma

oscillations had significant and positive correlation with

the pain relief. Specifically, the characteristic features of

cortical responder were obviously detected in the frontal

region. This finding is consistent with previous data

reporting the gamma activity in the prefrontal and fron-

tocentral region.34,40 Thus, we think it promising to

develop an algorithm for the detection of SCS analgesia

responder with the information of neural oscillation at

the frontal sites.

Despite EEG, quantitative sensory test may contribute

to the recognition of responder in pain management.42,43

One predictive model combined with the quantitative

sensory test and EEG has been demonstrated to be useful

to distinguish the postoperative opioid analgesia

responders.44 For those who suffer postherpetic neuralgia,

the patterns of sensory dysfunction may vary between dif-

ferent subjects despite the common etiology.45 This dis-

tinct phenotype of sensory impairment may indicate the

underlying responsive effect to analgesic agents,46 simi-

larly, that different responsive patterns of SCS may be

also associated with the forms of sensory deficiency in

our study.

In addition to EEG, multiple clinically relevant factors

can be used to predict the response of high frequency

SCS in patients with FBSS, including the trial pain relief,

predominant pain location, and the number of previous

Figure 3. Correlation analysis between pain relief and cortical oscillation. (A) The global alpha activity was strongly and positively correlated with

pain reduction. (B) Pain relief was significantly correlated with the frontal alpha spectral density. (C) Relation-ship between the overall gamma

band power and analgesic effect provided by the SCS treatment. (D) A strong and positive correlation was found between the frontal gamma

oscillations and therapeutic effect of SCS.
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surgeries.46 However, it is not available to apply all these

parameters in herpetic population. Likewise, risk factor of

postherpetic neuralgia development may be considered to

be as predictors for SCS responder (e.g., elderly, female

gender, severe acute pain).

There are several limitations in our study. First, we only

compared postoperative analysis between SCS analgesia

responders and nonresponders. It will be worth to identify

the potential responders preoperatively in the future appli-

cation of neuromodulation therapy. In addition, we only

examined the relationship between SCS treatment

responders and spectral power density, further analysis of

EEG data may be of help to detect the analgesia responders.

Also, it is promising to combine other clinical, experimen-

tal, and imaging data to develop an optimal algorithm of

responder recognition. Furthermore, we only investigate

the cortical dynamics by isolating the brain networks, it is

equally important to confirm the functional connectivity of

the whole brain in the future study.33 Finally, one common

challenge of EEG study in the field of pain research,

remains the reproducibility of the findings across different

subjects or sessions.47 Thus, it is necessary to set standard

procedures and well-designed experimental control to

enhance the reproducibility of data.48

Conclusions

In this prospectively study, we found the distinct pattern

of cortical oscillations between SCS analgesia responders

and nonresponders. The alpha and gamma spectral den-

sity was significantly enhanced in the responder subgroup.

Furthermore, we identified that both alpha and gamma

oscillations were strongly and positively correlated with

the reduction of pain. Thus, we propose that the nonin-

vasive and commonly used experimental device, namely

the EEG may be one promising tool to identify the anal-

gesia responders of SCS treatment for those suffered with

postherpetic neuralgia.
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